2x^2=643204

Simple and best practice solution for 2x^2=643204 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2=643204 equation:



2x^2=643204
We move all terms to the left:
2x^2-(643204)=0
a = 2; b = 0; c = -643204;
Δ = b2-4ac
Δ = 02-4·2·(-643204)
Δ = 5145632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5145632}=\sqrt{2572816*2}=\sqrt{2572816}*\sqrt{2}=1604\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1604\sqrt{2}}{2*2}=\frac{0-1604\sqrt{2}}{4} =-\frac{1604\sqrt{2}}{4} =-401\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1604\sqrt{2}}{2*2}=\frac{0+1604\sqrt{2}}{4} =\frac{1604\sqrt{2}}{4} =401\sqrt{2} $

See similar equations:

| (5x+2)=(x+10) | | 8+.15x=10+.1x | | 7x+18=4(x-5) | | 5.9g+4=1.9g+28 | | 5(3x+7)=-29+34 | | -13.66+7.4p+14.93=9.7p+15.07 | | m-15=-20 | | 4x+14=3x-22 | | 15+0.10=10+0.15x | | m-15=-29 | | 75x-15=180 | | 80x^2-200x=-125 | | -3+1/2z=1 | | 1/3(t+6)-10=-3t=2 | | 6t-5=2-7-6t | | 2x-7=8-8 | | x+53+73+66=180 | | 16m^2=225 | | x+1/2x+30=4x+110 | | 1/3p+2/5=4/7 | | 3(5g-15)-15g+45=0 | | 20x-12=20x-3 | | |3x+3|=13 | | 7z2=252 | | x+30=4x+110 | | (2x+1)=83 | | 5c-3=3c+5 | | (x+20)=47 | | 18=5m+ | | 14.1k+19.26=-5.4k-19.74 | | −1=−2x−(−x)+3 | | 84=-6(2n-4) |

Equations solver categories